
Journal of Applied Mechanics and Technical Physics, Vol. 48, No. 6, pp. 779–788, 2007

NUMERICAL SIMULATION OF HELICAL PERTURBATIONS

IN OPEN TRAPS WITH AN ELECTRON BEAM

UDC 533.951V. P. Zhukov,1 I. V. Shvab,1 and A. V. Burdakov2

Dynamics of the plasma in open magnetic traps with an electron beam, in particular, in a GOL-3
trap, is studied. The possibility of the formation of a resonant surface of the magnetic field and the
development of helical instability caused by the presence of this surface is studied numerically.
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Introduction. Experiments in a GOL-3 multimirror trap with an electron beam (based at the Bud-
ker Institute of Nuclear Physics of the Siberian Division of the Russian Academy of Sciences) [1] are performed
in the following manner. The vacuum chamber is filled by hydrogen with a concentration of (1–3) ·1021 m−3.
Then a discharge generating the plasma is ignited, and an electron beam increasing the plasma temperature to
(1.1–2.3) ·103 K (1.1–2.3 keV) is injected into the plasma. The maximum energy-transfer efficiency (30–40%) is
observed with a density of (1–3) ·1021 m−3. The thus-obtained hot plasma gets cooled during ≈50 μsec.

Experimental data [2] show that, when the beam is interrupted, the current equal to the current in the beam
flows in the center of the plasma, and the plasma current at the beam periphery flows in the opposite direction.
The total current intensity is rather low. This current configuration becomes destroyed during a time substantially
smaller than the time of ohmic decay. The rapid disintegration of the current configuration is assumed to be caused
by the evolution of tearing instability. This phenomenon is studied in the present paper.

Tearing instability, which plays an important role in plasma dynamics in tokamaks, is the reason for relaxation
(saw-tooth) oscillations inherent in all tokamaks. Owing to the evolution of this instability [3, 4], the intensity of
the current flowing over the plasma rapidly decreases, and the thermal energy of the plasma is transferred from
the center to the periphery. For tokamaks, these phenomena have been well studied. In particular, there are many
papers with numerical simulations of tearing instability, where two-dimensional [4–10] and three-dimensional [11,
12] models were used in approximations of reduced [5–8] and nonreduced [9–12] one-fluid [4, 11, 12] and two-fluid
[5–8, 10] magnetohydrodynamics.

Modeling of tearing instability in an open trap with an electron beam, which is described in the present
paper, was a pioneering study. The challenge was to investigate the possibility of the formation of a magnetic
configuration with a resonant surface of the magnetic field and the development of tearing instability in such a
configuration and to quantify characteristics of the flow caused by the development of this instability. In particular,
it was necessary to estimate the time of failure of the current configuration.

We used one- and two-dimensional one-fluid magnetohydrodynamic (MHD) models numerically implemented
with the use of finite-difference algorithms. The electron beam was taken into account by additional terms in
equations for the magnetic field. Corrugation and the presence of end faces were neglected in this model. Conduc-
tivity of the plasma outside the beam was assumed to be equal to the Coulomb conductivity at a temperature of
1.16 · 106 K (100 eV). Because of the beam instability, the flow is turbulent, and the plasma resistance in the region
occupied by the beam is greater than the Coulomb value. The exact value of anomalous resistance is unknown;
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therefore, the plasma resistance inside the beam was varied in calculations from 10 to 100 Coulomb values. When
the beam is interrupted, its anomalous resistance vanishes. The resistance of the hot plasma is substantially lower
than the resistance of the plasma at a temperature of 1.16 · 106 K (100 eV). The development of tearing instability
is determined by the local value of resistance on the resonant surface. This surface is outside the beam region; cor-
respondingly, the temperature on the resonant surface is significantly lower than 1.16 · 107 K (1 keV). Investigation
of the temperature distribution due to plasma heating by the beam is an independent difficult problem. In the
present work, for simplicity, the plasma resistance after beam interruption was assumed to be constant and equal
to the Spitzer resistance at a temperature of 1.16 · 106 K (100 eV).

Tearing instability has been well studied in the case without the beam and without strong gradients of
conductivity. It should be noted that strong gradients of conductivity usually occur at the edge of the beam
near the resonant surface. Such a situation has not been considered previously. For instance, the conductivity in
tokamaks changes at distances of the order of a small radius of the plasma and does not produce any significant
effect on tearing instability.

1. Mathematical Formulation of the Problem. Let us consider the mathematical formulation of the
problem. The original MHD equations of a one-fluid two-temperature plasma have the following form [13, 14]:
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Here ρ, V , and σ are the plasma density, velocity, and conductivity, respectively, j0 is the density of the current
intensity in the beam, H is the magnetic field, ν is the viscosity, Qν is the plasma heating due to the work of viscous
forces [14], pi,e and Ti,e are the plasma pressure and temperature, respectively, χ‖e,i and χe,i are the coefficients of
longitudinal and isotropic thermal conductivity, respectively, and γe = γi = γ = 5/3 are the ratios of specific heats
of electrons and ions; the subscripts i and e refer to ions and electrons, respectively.

Let us consider an MHD flow possessing helical symmetry. In this case, the scalar quantities and the
cylindrical components of the vectors (r, ϕ, and z) depend on coordinates in such a manner that the following
relation holds:

∂

∂z
= − 1

R

∂

∂ϕ
. (2)

Under helical symmetry, various functions depend on the value of ϕ − z/R rather than on ϕ and z separately.
Below, we understand ϕ as ϕ − z/R. For the GOL-3 facility, the parameter is R = z0/(2πaN). Here z0 = 1200 is
the facility length in centimeters, a = 5 is the facility radius in centimeters, and N is the mode number (integer).

There are reasons to believe that the mode dominating under GOL-3 conditions is the mode with N = 1
(see below); therefore, we used N = 1 in what follows. The calculations show that the results are little different in
the presence of other modes (e.g., the mode with N = 0).

In the case of helical symmetry (2), it is reasonable to use the g and s components of the vectors, which are
related to the ϕ and z components as follows:

fs = fϕ − (r/R)fz , fg = fz + (r/R)fϕ.

It is also convenient to introduce vector components (for brevity, we call them the Cartesian coordinates of the
vector) related to the r and ϕ components by

fx = fr cosϕ− fϕ sinϕ, fy = fr sinϕ+ fϕ cosϕ.

As ϕ is understood as ϕ− z/R, these components coincide with real Cartesian coordinates only as R → ∞.
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As the length of the GOL-3 facility is limited, symmetry (2) is invalid. Let us elucidate when the edge effects
can be neglected. This question is rather complicated. To estimate the influence of the edge effects, we assume the
magnetic field to be “frozen” into the end faces of the chamber. Because of this assumption, the longitudinal field
entrained by the transversely moving plasma is deformed. As a result, a transverse field is generated. In this case,
as is demonstrated below, plasma displacement is of the order of the neutral surface radius and is approximately
equal to a/2. Correspondingly, the magnitude of the transverse field generated owing to the presence of the end
faces is of the order Hza/(2z0) ≈ 0.1 kGs. For this field to exert no strong influence on the flow, the field should
be substantially less intense than the transverse magnetic field generated by the longitudinal current flowing over
the plasma. The value of the transverse magnetic field is of the order of 1 kGs. Thus, the approximation used is
validated. In reality, the restriction on the ratio a/z0 is far from being so rigorous because of the GOL-3 structure.

Magnetic field corrugation is neglected. As plasma cooling due to heat outflow to the end faces of the facility
occurs during ≈ 50 μsec and the duration of the processes considered is less than 10 μsec, the heat flux toward the
end faces of the facility can also be neglected.

Further we use dimensionless quantities. The facility radius is used as a length scale. The calculations were
performed with the following characteristic values: strength of the longitudinal magnetic field Hz = 50 kGs, density
ρ∗ = 1021 m−3, velocity (Alfvén velocity calculated on the basis of the toroidal magnetic field) VA = Hz/

√
4πρ∗ =

3.48 · 106 m/sec, time a/VA = 1.44 · 10−8 sec, pressure H2
z/(4π), etc.

With allowance for these facts, Eqs. (1) acquire the form
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Here ψ is the poloidal magnetic flux (g component of the potential vector), Hg is the g component of the magnetic
field, η is the plasma resistance, Qη is the ohmic heating, χ‖i,e and χi,e are the dimensionless coefficients of
longitudinal and isotropic thermal conductivity, respectively, and e is a vector with components er = es = 0 and
eg = 1. The differential operators used in Eqs. (3)–(9) have the following form [9, 15]:

div(f) =
1
r

∂ (rfr)
∂r

+
1
r

∂fs

∂ϕ
, (∇a)r =

∂a

∂r
, (∇a)s =

1
r

∂a

∂ϕ
, (f∇)a = fr

∂a

∂r
+ fs

1
r

∂a

∂ϕ
.

The equations for velocity (3) written in Cartesian coordinates have a simpler form. In addition, the use of
Cartesian coordinates is of principal importance for constructing the finite-difference algorithm [16] used to solve
the problem posed.

The initial conditions are chosen to be an axisymmetric configuration with a neutral surface and a small
perturbation of the magnetic flux violating this symmetry:

ψ = ψ0(r) + ψpr(1 − r2) cosϕ.

Here ψp = 10−4 is the perturbation amplitude; the function ψ0 corresponds to the current strength distribution:

jg(0) =

{ −5 kA/(πr21), r < r1 = 4 cm,

0, r > r1.

It was assumed thereby that Hz = 1. The plasma density was constant (ρ = 1), and the plasma velocity was V = 0.
The plasma pressures pe and pi were either chosen from the condition of plasma equilibrium in the magnetic field
or prescribed in the form

pe = pi =

{
p0, r < r0 = 2.5 cm,

p0/10, r > r0.

The dimensionless quantity p0 was set to be 1.584 · 10−3, which corresponds to a temperature Te = Ti = 1.16 ×
106 K (100 eV).

Thus, the initial configuration is not an equilibrium one. Because of the large strength of the longitudinal
field, a small displacement of the plasma establishes the necessary equilibrium. Moreover, heating caused by the
beam leads to fast and intense heating of the plasma. Therefore, a particular form of the initial pressure distribution
is not principally important for the processes under study. It should be noted that experimental data on the radial
distribution of pressure are unavailable.

The beam density j0 was set in the form

j0 =

{
30 kA/(πr20), r < r0 = 2.5 cm, t < 8.64 μsec,

0, r > r0 = 2.5 cm or t < 8.64 μsec.

The plasma resistance was calculated by the formulas

η =

⎧
⎪⎪⎨
⎪⎪⎩

ηb � η0, r < r0 = 2.5 cm, t < 8.64 μsec,

ηb + (η0 − ηb)(r − r0)/δ, r0 < r < r0 + δ, t < 8.64 μsec,

η0, r > r0 + δ or t > 8.64 μsec.

In calculations, the width of the transitional zone δ was assumed to be 0.5 cm. Such a distribution of η indicates
that the presence of the beam leads to the development of small-scale beam instability, which is the reason for the
emergence of anomalous resistance [2].

The problem was solved in the domain 0 � r � 1, 0 � ϕ � 2π. At the boundary r = 1, we assumed that

V = 0, Ti,e = const (10)

and set the tangential components of the electric field (Eg = Es = 0), which are the conducting wall conditions:

ψ = const,
∂Hg

∂r
= 0. (11)

The plasma viscosity is usually low. In dimensionless calculations, we have the coefficient ν � 0.1η, and its
value has no effect on the calculation results.
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Fig. 1. Current density jg versus the radius r for t = 50 (1), 600 (2), and 700 (3).

2. Finite-Difference Scheme. The problem of tearing instability is one of many hydrodynamic problems
with a natural cylindrical coordinate system (r, ϕ, z). In this case, the boundary of the computational domain and
the current layer (region of high gradients) are located on circumferences. The origin is not physically defined. It
is known that solving such problems numerically involves difficulties in obtaining a smooth solution in the vicinity
of the origin, because the grid step in the azimuthal direction decreases as r → 0. In the vicinity of r = 0, there
arises nonphysical small-scale instability leading in some cases to the solution decay.

Zhukov [16] provided a detailed description of a finite-difference scheme that allows one to avoid the difficulties
mentioned above. The scheme [16] is designed for solving the problem of the development of tearing instability in
tokamaks in the approximation of the two-fluid MHD model.

The scheme proposed in [16] is a scheme that involves splitting with respect to spatial variables and possesses
the property of full approximation [17] and a sufficient reserve of stability. The scheme [16] is implemented through
an iterative process rapidly converging to an absolutely implicit scheme. The optical time step in this scheme is
actually restricted by the Courant number in the radial direction. This restriction has a physical nature and is
fairly acceptable.

To solve problem (3)–(11), Zhukov [16] introduced a grid refined in the neutral layer in the r direction with
a step ri (i = 0, . . . , i0 +1). For this grid, r|i=0 = 0 and (ri0 + ri0+1)/2 = 1. With respect to ϕ, a uniform grid with
a step hϕ = 2π/j0 is used: ϕj = jhϕ (j = 1, . . . , j0). With respect to j, periodicity with a period j0 is assumed,
where j0 is an integer. At points ri and ϕj , which are called integer points, the values of the parameters p, pe, T ,
ρ, Hg, χ, and η are calculated. Semi-integer points ri+1/2 = (ri+1 + ri)/2 (i = 0, . . . , i0) and ϕj+1/2 = hϕ(j + 1/2)
are also introduced, where the values of Ag, jg, V , and ν are calculated.

In the present work, the scheme [16] was modified to solve the problem posed above.
3. Calculation Results. Results of one-dimensional and two-dimensional numerical simulations of helical

perturbations in open traps with an electron beam are presented below.
3.1. One-Dimensional Case. The solution was assumed to be independent of ϕ (ψp = 0). The calculations

were performed with a resistance outside the beam η0 = 4.5 · 10−6 corresponding to the Coulomb value at a
temperature of 1.16 · 106 K (100 eV). The presence of beam instability leads to a significant increase in the plasma
resistance in the region occupied by the beam, as compared with the Coulomb value. The evolution of the plasma
flow was considered for ηb = 100η0.

Figure 1 shows the current density as a function of the radius at the beginning of the process (t = 50), before
beam interruption (t = 600), and at a certain time after beam interruption (t = 700). The calculation results show
that the current density at the center tends to the current density in the beam, because of nonuniform resistance
of the plasma and the presence of the beam, while a current with the opposite sign emerges at the periphery. The
magnetic field Hs and magnetic flux ψ [see Eqs. (5) and (9)] corresponding to this current at different times are
shown in Fig. 2. It follows from Fig. 2 that a resonant surface of the magnetic field is formed by the end of the
beam action, i.e., Hs changes its sign at r = 0.6. Hence, tearing instability may develop. It is seen in Fig. 2b that
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Fig. 2. Magnetic field (a) and magnetic flux (b) for t = 50 (1), 600 (2), and 700 (3).
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Fig. 3. Time evolution of the maximum absolute values of the current density (a) and plasma
temperature (b): curves 1 and 2 refer to ηb = 100η0 and 1000η0 , respectively.

the magnetic flux at the center is greater than that at the boundary r = 1. Therefore, tearing instability may lead
to elimination of the external flow and plasma ejection onto the wall.

Figure 3a shows the maximum absolute value of the current density versus time for ηb = 100η0 and 1000η0.
Note that the maximum absolute value of jz is reached at a point corresponding to a negative current. The current
density is seen to increase faster for the higher value of ηb at the initial time. The reason is a more nonuniform
resistance at ηb = 1000η0 than at ηb = 100η0. It is also worth noting that the drastic increase in jmax is caused by
the formation of the current with the opposite sign. A significant decrease in the current density immediately after
beam interruption is caused by disappearance of beam instability and by the plasma resistance becoming uniform.
In this case, the effect of current collection [4] after beam interruption vanishes, and the current density distribution
becomes more smooth (curve 3 in Fig. 1). At the moment of beam interruption, the maximum absolute value of
the current density depends only weakly on ηb.

Note that the change in the current density is mainly determined by the functions ηb and j0. The calculations
show that the results of solving Eqs. (5) and (6) with V = 0 almost coincide with those described above.

Figure 3b shows the maximum plasma temperature Tmax = Te + Ti versus time for different values of ηb.
The temperature is seen to increase faster for the higher initial value of ηb. At high values of t, however, the value
of Tmax is only weakly dependent on ηb.
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values of the parameter ε at the time t = 600: 1) ε = 0 and I0 = 200; 2) ε = 10−11 and I0 = 200;
3) ε = 0.25 · 10−11 and I0 = 400; 4) ε = (1/16) · 10−11 and I0 = 800.

Figure 4 shows the radial distributions of ion and electron pressures at the moment of beam interruption. It
is seen that the electron pressure is higher than the ion pressure, which is caused by ohmic heating.

The configuration emerging owing to the presence of the beam and a high gradient of plasma conductivity
is unstable for several modes (in particular, for N = 1 and 0). Our choice of the mode with N = 1 is based on
the assumption that this is a fundamental mode, because the reserve of the magnetic fluxes of both signs reaches
the greatest value for the mode with N = 1. In addition, results of preliminary three-dimensional calculations are
available, which confirm that the mode with N = 1 is dominating. We also performed calculations for the mode
with N = 0 (the second one in terms of the magnitude of magnetic fluxes of different signs), which turned out to
be qualitatively consistent with results for the mode with N = 1 described in the present work (in particular, the
order of magnitude of the time of instability development was the same).

As the scheme used in calculations has the second order of approximation with respect of the spatial variable,
numerical dispersion, which exerts the greatest effect on the distribution of the plasma density in the region of the
highest gradients (at the beam periphery), leads to the formation of small-scale perturbations (Fig. 5). To suppress
the dispersion, we replaced Eq. (7) by the equation

∂ρ

∂t
+ div (V ρ) = −εΔ2ρ.
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Fig. 7. Distributions of the current density along the x and y coordinates for t = 500 (a), 800 (b), and 1800 (c).

The term εΔ2ρ substantially suppresses small-scale perturbations and weakly affects long-wave disturbances. Fi-
gure 5 shows the radial distributions of the plasma density for different numbers of grid nodes I0 and different values
of the parameter ε (it was assumed that ε ∼ I−2

0 ). It follows from Fig. 5 that the distribution is smooth for ε 
= 0,
and convergence is observed with increasing I0. With I0 being varied, the plots of the remaining functions change
insignificantly. Note that tearing instability is mainly determined by the distribution of the electric current and the
magnetic field induced by the latter, while the distribution of the plasma density produces only a weak effect on
the development of tearing instability [10].

3.2. Two-Dimensional Case. In the two-dimensional case, a small perturbation of the magnetic flux ψp

leads to the emergence of tearing instability. Figure 6 shows the isolines of the magnetic field. The figure shows the
beginning of the reconnection process (t = 500), developed instability (t = 800), and the moment when the internal
flow reaches the boundary and a quasi-steady configuration is established (t = 1800). In the case considered, the
internal magnetic flux is not completely eliminated in the course of reconnection, and the quasi-steady configuration
is not axially symmetric.

Figure 7 shows the x and y distributions of the current density. Instability (loss of axial symmetry) is seen
to appear already at the stage of the beam action (t = 500). After beam interruption (t = 800), the current layer
becomes clearly expressed, which characterizes strong instability. At the end of reconnection (t = 1800), the current
density is low.

Figure 8 shows the distributions of the ion pressure at different times. Because of the instability development,
the high-pressure region moves toward the cold boundary. Hence, these is a strong heat flux toward the boundary.
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Figure 9a shows the time evolution of the maximum absolute value of the current density. A drastic increase in
the current density at the initial time is caused by the formation of a current with the opposite sign. Then the current
density decreases because of the plasma resistance. The effect of tearing instability on the dependence jmax(t) during
the beam action is small. After beam interruption, the maximum of the current density nonuniformly increases,
which is caused by the rapid development of tearing instability. When the negative magnetic flux surrounding the
positive magnetic flux vanishes, instability disappears, which results in a drastic decrease in the current density.

Figure 9b shows the time evolution of the maximum plasma temperature. Note that the maximum value of
temperature drastically increases at the initial time and then remains almost unchanged, in contrast to the total
thermal energy.

Conclusions. Thus, the following results were obtained within the framework of the one-dimensional model.
The evolution of the current density distribution is mainly determined by the magnitude of resistance and

the beam current strength. Plasma motion has almost no effect on the current density.
The greater the ratio of the plasma resistances inside and outside the beam, the greater the maximum density

of the reverse current. The maximum reverse current density in space and time depends substantially on the ratio
of resistances. At the moment of beam interruption, however, the current density distribution depends weakly on
the anomalous resistance.

The greater the ratio of the plasma resistances inside and outside the beam, the faster the increase in plasma
temperature due to ohmic heating, but the plasma temperature at the moment of beam interruption is independent
of this ratio.

The calculations predict that the plasma temperature increases approximately to 3.5 · 106 K (300 eV). Its
value in experiments reaches 1.16 · 107 K (1 keV). Hence, the energy transfer directly from the beam to the plasma
has to be taken into account. The calculations also ignored the heat flux onto the end faces of the chamber. Possibly,
allowance for these factors in the numerical model and comparisons of the results obtained with experimental data
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will allow one to quantify these processes. It should be noted that the distribution of the most important quantity
(magnetic field) depends only weakly on pressure and temperature.

The results obtained within the framework of the two-dimensional model allow the following conclusions to
be drawn.

Instability starts developing at the stage of beam existence and disappears in a certain time after beam
interruption. The time of instability evolution is approximately 7 μsec, which agrees with experimental results.

The magnetic flux distribution shows that the internal magnetic flux is greater than the external one. As a
result, during the evolution of tearing instability, the hot plasma from the center is ejected onto the chamber wall.

It is necessary to optimize the beam parameters so that the developing tearing instability remains internal,
i.e., so that the energy is not ejected onto the chamber wall. For this purpose, the internal magnetic flux arising
owing to the beam presence has to be smaller than the external magnetic flux.

This work was supported by the Russian Foundation for Basic Research (Grant No. 04-01-00244).
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